JURE BRČIĆ, Mesh sticking probability in fishing gear selectivity: Methodology and case study on Norway lobster (Nephrops norvegicus) and mantis shrimp (Squilla mantis) in the Mediterranean Sea creel fishery, Mediterranean Marine Science, 20|2019, 487-495


Fish or crustaceans stuck in the fishing gear meshes can lead to operational problems in some fisheries and thereby affect theeconomic gain. However, mesh sticking probability has never been formally quantified as a part of the estimation of fishing gearsize selectivity. Therefore, this study developed a size selection model and estimation procedure that, besides the size dependentretention and escape probabilities, includes the size dependent mesh sticking probability. The new method was applied to quantify the size dependent retention, sticking and escape probabilities for mantis shrimp (Squilla mantis) and Norway lobster (Nephrops norvegicus) in creels with 41 mm square mesh netting. The mesh sticking probability was found to display a bell-shaped curvature with a maximum value for a specific carapace length and decreasing probabilities for both smaller and bigger individuals. For mantis shrimp the maximum sticking probability was found for 32.5 mm carapace length with a value at 13.5%, while 63.1% and 23.4% of that size were respectively retained inside the creels and escaped. For Norway lobster the maximum sticking probabilitywas 2% and occurred for 34.0 mm carapace length. The method and estimation procedure presented in this study might be applicable for quantifying mesh sticking probability as an integral part of future fishing gear size selectivity studies on other speciesand fisheries.

Ακολουθήστε το ΕΚΤ: