GEORGE VARLAS, One-year assessment of the two-way coupled atmosphere-ocean wave modeling system CHAOS over the Mediterranean and Black Seas, Mediterranean Marine Science, 0,


Nowadays, it has become clear that atmosphere and ocean should be simulated by integrated modeling systems resolving interconnected physical factors which determine Earth’s energy balance. Waves play a key role on the interfacial interaction between atmosphere and ocean regulating momentum, heat and moisture exchange. This study aims to evaluate the two-way coupled atmosphere-ocean wave system CHAOS (Chemical Hydrological Atmosphere Ocean wave System) over the Mediterranean and Black Seas. The evaluation is performed against in-situ and remote sensing data for the period from 1 December 2013 to 1 December 2014. CHAOS includes the Weather Research Forecasting (WRF) model version 3.8 as atmospheric component and the Wave model (WAM) cycle 4.5.4 as ocean wave component, coupled through the OASIS3-MCT coupler version 3.0. In order to assess the impact of the atmosphere-ocean waves coupling, two approaches of continuous model simulations are followed. In the first approach (1-way coupling mode) the ocean wave component uses the winds produced by the atmospheric component while in the second approach (2-way coupling mode) the atmospheric component additionally uses the sea state information estimated by the ocean wave component through wave-dependent Charnock parameter computations. In the 2-way coupling mode, the attenuation of the atmospheric flow has a damping effect on wind-generated waves. The simulations in 2-way coupling mode produce more realistic results yielding statistical improvements. Against buoys observations, 2-way reduces root mean square error (RMSE) per 1.2% and 6.3% for wind speed and significant wave height, respectively, while against Jason-2 satellite retrievals per 0.5% and 2.4%, respectively. Additionally, the 2-way outperforms the 1-way coupling mode under intense wind and wave conditions during this one-year period.

Follow EKT: